Characterization and Existence of Gröbner Bases

نویسنده

  • Christoph Schwarzweller
چکیده

(2) Let n be an ordinal number, T be an admissible connected term order of n, L be an addassociative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and f , p, g be polynomials of n, L. Suppose f reduces to g, p, T . Then there exists a monomial m of n, L such that g = f −m∗ p and HT(m∗ p,T ) / ∈ Supportg and HT(m∗ p,T )≤T HT( f ,T ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATH536A Paper: Gröbner Bases

An introduction to Gröbner bases and some of their uses in affine algebraic geometry.

متن کامل

Universal Gröbner Bases in Orlik-solomon Algebras

, the Z-algebra OS(M) is isomorphic to the cohomology Z-algebra of the manifold M= C \ ⋃n i=1 Ker(θi). For every term order of the monoids of E, we construct the corresponding reduced Gröbner basis of the Orlik-Solomon ideal I(M). We prove that the set of circuit boundaries is a universal Gröbner basis of I(M). Every ordering of the elements of M determines a canonical basis of OS(M) (termed in...

متن کامل

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004